Model-Free Control of a Flapping-Wing Flying Microrobot

Néstor O. Pérez-Arancibia∗, Pierre-Emile J. Duhamel∗, Kevin Y. Ma, and Robert J. Wood

Abstract—In this paper, we present a model-free experimental method to find a control strategy for achieving stable and autonomous, from a control perspective, flight of a dual-actuator biologically inspired flapping-wing flying microrobot. The main idea proposed in this work is the sequential tuning of parameters for an increasingly more complex strategy in order to sequentially accomplish more complex tasks: upright stable flight, straight vertical flight, and stable hovering with altitude and position control. Each term of the resulting multiple-input–multiple-output (MIMO) controller has a physical intuitive meaning and the control structure is relatively simple, such that, it could potentially be applied to other kinds of flapping-wing robots.

I. INTRODUCTION

Experiments demonstrating the first controlled vertical unconstrained flight of a 83-mg flapping-wing flying microrobot were presented in [1]. There, the idea of using separate actuators exclusively for control was introduced and demonstrated, through static and flying experiments. The argument for designing, developing, and integrating separate actuators exclusively for control is biologically inspired, based on evidence suggesting that insects in nature employ separate muscles for power and control, respectively [2]. There are important practical problems that arise in the fabrication process developed for materializing the design in [1]. Specifically, fabrication needs to be essentially perfect in order to avoid asymmetries in the prototypes that would make them very difficult to stabilize and control, or uncontrollable. Despite these fabrication challenges, unconstrained flight control of the prototype in [1] was preliminarily, but convincingly, demonstrated using the ideas and findings on altitude control and pitch control in [3]–[5], and references therein.

A different design approach, first proposed in [6], was fully developed in the work presented in [7], which is the basic design of the robotic prototype we consider in this paper. This design consists of dual completely independent power actuators that drive each of the wings independently through two separate transmissions, and departs significantly from the previous purely biologically inspired robotic models in [1]. An adaptive model-based control strategy for the prototype in [7] was proposed and tested in the work presented in [8]. In this paper, we propose a new control strategy, which is entirely experimental and model-free, but takes advantage of the knowledge on flapping-wing systems gathered through static and flying experiments in [3]–[5].

In this paper, we provide evidence that the control philosophy first proposed in [1], based on asymmetrical flapping patterns, is applicable to the general flapping-wing flight control case. The experimental results presented here are significantly better than those presented in [1], mainly because the design considered in this work (in Figs. 1 and 2) is, from a practical perspective, more controllable and robust to fabrication errors. The main new idea explored in this paper is the feasibility of finding a multiple-input–multiple-output (MIMO) controller through a sequence of three tuning experiments, in which in every step, the complexity of the controller structure is increased in order to accomplish more sophisticated control objectives, while the microrobot is in unconstrained flight. In the first set of experiments, we tune a MIMO scheme that directly filters the pitch and roll angles of the robot. Simultaneously, we add to the control scheme a term that
filters the velocities of the robot during flight along the pitch and roll axes, which makes the control strategy robustly stable. In the second set of experiments, we demonstrate that pitch and roll can be actuated in order to control the robot’s position on the horizontal plane. Clearly, the same method can be used to correct for drift, which allows the robot to perform straight vertical flight. Finally, in the last set of experiments, we close the altitude control loop in order to make the robot hover.

The rest of the paper is organized as follows. Section II describes the flapping-wing microrobot used in the experiments and the main experimental setup. Section III describes the proposed model-free control strategy. Experimental results are presented in Section IV. Finally, some concluding remarks are given in Section V.

Notation—

- \mathbb{R}, \mathbb{R}^+ and \mathbb{R}^{++} denote the sets of reals, non-negative reals and strictly positive reals, respectively.
- \mathbb{Z}, \mathbb{Z}^+ and \mathbb{Z}^{++} denote the sets of integers, non-negative integers and strictly positive integers, respectively.
- The variable t is used to index discrete time, i.e., $t \in \{KT\}_{k \in \mathbb{Z}}$, with $k \in \mathbb{Z}^+$ and $T_k \in \mathbb{R}^{++}$. T_0 is referred to as the sample-and-hold time.
- The variable τ is used to index continuous time. Thus, for a generic continuous-time variable $x(t)$, $x(t)$ is the sampled version of $x(\tau)$, and vice versa.
- z^{-1} denotes the delay operator, i.e., for a signal x, $z^{-1}x(k) = x(k-1)$ and conversely $zx(k) = x(k+1)$. For convenience, z is also the complex variable associated to the z-transform.
- s^{-1} denotes the integrator operator and conversely s denotes the differential operator. For convenience, s is also the complex variable associated to the s-transform.
- A vector $\vec{v} \in \mathbb{R}^3$ is written with respect to the inertial orthogonal frame, $\{X, Y, Z\}$, as \vec{v}, and with respect to the body orthogonal frame, $\{\hat{x}, \hat{y}, \hat{z}\}$, as \hat{v}. The unitary vector with the same direction as \vec{v} is written as \hat{v}.

II. DESCRIPTION OF THE MICROROBOT AND MAIN EXPERIMENTAL SETUP

A. Force and Torque Generation

A photograph of one of the robotic prototypes used in this work is shown in Fig. 1. An illustration of the same prototype, with the most relevant variables and components labeled, is shown in Fig. 2. This robotic design, first presented in [7], was entirely developed and fabricated at the Harvard Microrobotics Laboratory based on design principles and models that previously demonstrated the ability to liftoff [9] and fly under control in one degree of freedom [3], [4].

The robot shown in Figs. 1 and 2 is composed of two independent identical piezoelectric bending bimorph cantilever actuators of the same kind in [10] and [9], which are used to provide mechanical power and for control simultaneously, two flexure-based transmissions (one for each side of the robot), a pair of airfoils, and an airframe, which serves as mechanical ground. Each transmission maps the approximately linear motions of its corresponding actuator into the flapping motion of the corresponding wing, labeled as $\varphi_R(\tau)$ and $\varphi_L(\tau)$ in Fig. 2 for the right and left wing, respectively. The transmissions consist of links and joints with geometries designed to maximize the product of stroke amplitude and first resonant frequency, given known actuator and airfoil properties [7].

The use of dual power actuators, as shown in Figs. 1 and 2, allows for multiple flapping combinations and strategies that are matter of current and further research. In principle, it is not obvious what kinds of periodic flapping patterns are best in terms of energy efficiency, control effectiveness, and maneuverability. However, from what is observed in nature [2], it seems reasonable to use sinusoidal flapping patterns, though other options, such as split-cycle flapping, have been proposed in the literature [6].

Here, neglecting the nonlinearities observed in this kind of flapping system [11], the flapping patterns by design are chosen to be

$$\varphi_R(\tau) = \varphi_{AR}(\tau) \sin(2\pi f_R \tau) + \varphi_B(\tau),$$

$$\varphi_L(\tau) = \varphi_{AL}(\tau) \sin(2\pi f_L \tau) + \varphi_B(\tau),$$

for the right side and left side of the robot in Fig. 2, respectively. Notice that

$$\varphi_{AR}(\tau) = \varphi_{AL}(\tau), \quad f_R = f_L, \quad \text{and} \quad \varphi_B(\tau) = \varphi_B(\tau) = 0,$$

we obtain the symmetric flapping in Fig. 3-(a). For flapping systems actuated by piezoelectric actuators, the discrete-time identified mappings from the actuator excitation to the sampled flapping angle, are approximately linear time-invariant (LTI) [11], and therefore, (1) and (2) are approximately achieved by exciting the right actuator and the left actuator respectively with

$$\nu_R(t) = \alpha_R(t) \sin(2\pi f_R t) + \beta_R(t),$$

$$\nu_L(t) = \alpha_L(t) \sin(2\pi f_L t) + \beta_L(t),$$

where $-1 \leq \nu_R(t) \leq 1$ and $-1 \leq \nu_L(t) \leq 1$. The excitation signals defined by (4) and (5) are mapped to voltages with the same form over the range $[0, 300]$ V, used to power the piezoelectric actuators of the robot, as previously described in [3]-[5], [11], [12], and references therein.

Here, we employ two specific basic flapping modes that are combined in order to generate the body torques required for flight control. The first flapping mode, used to generate pitch torque, is shown in Fig. 5-(b), which is produced by exciting the actuators with

$$\alpha_R(t) = \alpha_R(t), \quad f_R = f_L, \quad \text{and} \quad \beta_R(t) = \beta_L(t) \neq 0.$$

In the particular case shown in Fig. 3-(b), $\beta_R(t) = \beta_L(t) > 0$, which produces a positive pitch torque by shifting the mean stroke, so that, $\varphi_B(\tau) = \varphi_B(\tau) > 0$. Similarly, $\beta_R(t) = \beta_L(t) < 0$
produces a negative pitch torque by shifting the mean stroke, so that, $\varphi_{BR}(t) - \varphi_{BL}(t) < 0$. The second flapping mode, used to generate roll torque, is shown in Fig. 3, and it is produced by exciting the actuators with

$$\alpha_R(t) \neq \alpha_L(t), \quad f_R = f_L, \quad \text{and} \quad \beta_R(t) = \beta_L(t) = 0.$$ \hfill (7)

In the particular case shown in Fig. 3-c, $\alpha_R(t) < \alpha_L(t)$, which creates a positive roll torque by generating a larger average lift force on the left than the average lift force generated on the right. Similarly, $\alpha_R(t) > \alpha_L(t)$ produces a negative roll torque by generating a larger average lift force on the right than the average lift force on the left.

The production of forces by flapping wings is a very complex phenomenon to analyze in detail. However, there are some well-established fundamental facts that allow us to understand how forces and body torques are generated and can be used to attain unconstrained controlled flight. An illustration of the robot’s right wing depicting the generation of lift and drag forces during a flapping cycle is shown in Fig. 4. Here, a wing hinge connects the transmission to the wing, so that, when the wing is flapped according to a sinusoidal angle $\varphi_R(\tau)$, aerodynamic and inertial forces produce a passive rotation $\Theta_R(\tau)$. The generation of $\Theta_R(\tau)$ implies that the wing ‘faces’ the air with an angle of attack necessary for the creation of time-varying lift and drag forces, the vectors $\vec{\gamma}_L(\tau)$ and $\vec{\gamma}_R(\tau)$. As is customary in the field of aerodynamics, the force vectors $\vec{\gamma}_L$ and $\vec{\gamma}_R$ are conceptual tools used to model a complex phenomenon in which the wing flapping produces a time-varying distribution of forces over the surfaces of the wing. In this case, the wing in Fig. 4 can be thought of as completely 2-D, which implies that the generation of forces can be treated as a vector field acting on a surface in space (the wing), which include aerodynamic and inertial contributions.

In principle, using basic vector calculus, it is possible to compute the time-varying total force exerted on the wing and the corresponding center of force exactly, from the force distribution. However, it is experimentally very challenging to design a sensor or devise an analytical method to measure the distribution of forces over the wing. A simplified approach is to measure the total forces along predetermined directions, as discussed in [4], [12], and [13], and make some assumptions about the geometric location of the center of force. For a flapping system of the kind considered here, there exist accurate records of the forces generated along the z-axis (lift forces) [4], [13] and preliminary measurements of the drag forces along the x-axis direction, as defined in Fig. 4 [14]. Also, from a simple analysis of the centrifugal forces acting on the wing, it is possible to determine that the forces along the y-axis are negligible compared to the lift and drag forces acting on the wing. Thus, from the data presented in [4], [13] and [14], for the unbiased flapping $\varphi_R(\tau) = \varphi_A \sin(2\pi f_R \tau)$, it is reasonable to model the sampled lift force as $\vec{\gamma}_L(t) = \vec{\gamma}_{L0} + D(t)x$, where $\vec{\gamma}_{L0}$ is a periodic signal with frequency $2f_R$ Hz and two positive maxima per cycle at $2\pi f_R = \omega_R t = \pi n, n \in \mathbb{Z}^+$ and two negative minima per cycle at $2\pi f_R = \omega_R t = (n + \frac{1}{2}) \pi, n \in \mathbb{Z}^+$. In steady state, for the case discussed here, the DC component of $\vec{\gamma}_{L0}(t)$, γ_{L0}, is positive and can be estimated as

$\gamma_{L0} \approx A_{\gamma_{L0}}(t) = \frac{1}{N_t} \sum_{i=0}^{N_t-1} \gamma_{L0}(t - T_s) i > 0,$ \hfill (8)

where $t = kT_s$, with $k \in \mathbb{Z}, T_s \in \mathbb{R}$, and $N_t \in \mathbb{Z}^+$. Similarly, the drag force can be modeled as $\vec{\gamma}_{D_{BR}}(t) = \gamma_{D_{BR}}(t) \hat{\omega}_R$, where $\gamma_{D_{BR}}(t)$ is a periodic signal with frequency f_R Hz with one positive maximum per cycle at $2\pi f_R = \omega_R t = (2n + 1) \pi, n \in \mathbb{Z}$. Here, the DC component of $\gamma_{D_{BR}}(t)$, γ_{L0}, is theoretically 0 and can be estimated as

$\gamma_{D_{BR}} \approx A_{\gamma_{D_{BR}}} = \frac{1}{N_t} \sum_{i=0}^{N_t-1} \gamma_{D_{BR}}(t - T_s) i \approx 0,$ \hfill (9)

where $t = kT_s$, with $k \in \mathbb{Z}, T_s \in \mathbb{R}$, and $N_t \in \mathbb{Z}^+$. Two fundamental signals in the analysis of autonomous flight and in the development of a suitable control strategy are the average lift force γ_{L0} in (8) and the analogous average lift force γ_{L0}, corresponding to the right wing and left wing, respectively. Similarly, other fundamental signals are the average pitch torque t_{p0} and average roll torque t_{r0}, to be discussed later in this paper, associated with the sampled instantaneous pitch torque $t_{pR}(t)$ and sampled instantaneous roll torque $t_{rR}(t)$, respectively. The reason why we care about these average signals is that the system dynamics filter out the high frequencies of the instantaneous signals acting on the system. To see this, consider the constrained one-dimensional case in [4], where the equation of motion is simply given by

$$\gamma_{L0}(t) - m g - c_p \varphi_R(t) = m \ddot{\varphi}_R(t),$$ \hfill (10)

where $\gamma_{L0}(t) = \gamma_{L0}(t) + \gamma_{L0}(t)$, m is the robot’s mass, g is the standard gravity acceleration constant, c is a damping coefficient, and $p_R(t)$ is the measured robot’s altitude. Thus, as defined $\gamma_{L0}(t)$, $\gamma_{L0}(t) = m \ddot{\varphi}_R(t)$, it follows that the mapping from $\varphi_R(t)$ to $p_R(t)$ is the low-pass filter

$$L(s) = \frac{1}{cs + m s^2}.$$ \hfill (11)

Consequently, for the parameters of the system considered here, as can be easily demonstrated through simulations, the digital inputs $x(t)$ and $A_i(t) = \frac{1}{\sqrt{\sum_{n=0}^{N_t-1} x(t - n) \sin(2\pi f_R n)}}$ produce the same outputs when the discrete-time version of (11) is excited with them. This also means that when (11) is excited with the continuous-time versions of $x(t)$ and $A_i(t)$, $x(t)$ and $A_i(t)$, the outputs are essentially the same.

By definition, in steady state (constant amplitude and constant frequency of the flapping angle), γ_{L0} is constant. However, if the DC component of γ_{L0} is changed at a rate significantly slower than the rate of change of γ_{L0} itself, we can think of γ_{L0} as a function that stays approximately constant during a stroke cycle, but that might change from one cycle to another. Thus, it is possible to assume that for a given stroke cycle, the DC component γ_{L0} and the mean total force, Φ_L, is generated by a single flapping wing (the right wing in this case) throughout a stroke, take the same value. In biological literature on flapping-wing flight [15]–[17], Φ_R is often estimated as

$$\Phi_R = \int_0^{\Xi} \rho C_{\Phi_R} \nu^2(\xi) \cos(\pi R \xi) d\xi,$$ \hfill (12)

which is a standard quasi-steady blade-element formulation of flight force (see [13] and references therein), where ρ is the density of the air, C_{Φ_R} is the mean force coefficient of the wing throughout the stroke, $\nu^2(\xi) = \nu^2(\xi)$ is the mean square relative velocity of each wing section, $c_{\Phi_R}(\xi)$ is the chord length of the wing at a distance ξ from the base, and Ξ is the total wing length. In the case of a sinusoidal strike frequency of f_R Hz, $\varphi_R(\tau) = \varphi_A \sin(2\pi f_R \tau)$, with a horizontal stroke plane, the mean square relative velocity of each wing section can be roughly estimated as

$$\nu^2(\xi) = 4\pi^2 f_R^2 \varphi_A^2 \frac{1}{T_R} \int_0^{T_R} \frac{\cos^2(2\pi f_R \tau) d\tau}{\sqrt{\rho C_{\Phi_R} \nu^2(\xi)}} = 2\pi^2 \varphi_A^2 \frac{f_R^2}{T_R},$$ \hfill (13)

with $T_R = f_R^{-1}$. This implies that, regardless of the size and shape of the wing, the estimated mean total flight force directly depends on f_R and φ_A, which indicates that in order for flying insects to accelerate against gravity or hover at a desired altitude, they can modulate the average lift force by changing the stroke amplitude, φ_A, or by changing the stroke frequency, f_R. Clearly, the same analysis is valid for the left wing.

At this point, we have all the basic information for proposing an actuation strategy that would allow us to directly modify the pitch and roll torques, and the lift force acting on the robot. First, let us consider the lift force and assume that both wings are flapped at the same frequency, i.e., $f_L = f_R$, then from (12) and (13) it immediately follows that the magnitude of the total average lift force acting on the robot, $\gamma_{L0} = \gamma_{L0} + \gamma_{L0}$, can be modulated by simultaneously varying the sampled amplitudes $\varphi_A(t)$ and $\varphi_A(t)$, which are proportional to $\alpha_{L}(t)$ and $\alpha_{R}(t)$, because here the mapping from $\varphi_R(t) \varphi_R(t)$ to $\varphi_R(t) \varphi_R(t)$ is approximately LTI. Now, considering (12) and (13), it immediately follows
that the magnitude of the sampled total average roll torque acting on the robot, \(t_{pR} \), associated with the instantaneous magnitude \(t_{p0} \), can be modulated by flapping the robot’s right and left wings with different amplitudes, i.e., \(\varphi(t) \neq \varphi(t) \), which are proportional to \(\alpha(t) \) and \(\beta(t) \), because as explained before, the mapping from \([\varphi(t) \varphi(t)]^T \) to \([\varphi(t) \varphi(t)]^T \) is approximately LTI.

Finally in this section, we discuss the actuation method used to generate and modulate pitch torques. As discussed in [3], a biased flapping with respect to the \(\hat{x} \) axis, i.e., \(\varphi(t) \neq \varphi(t) \), produces a sampled total average pitch torque \(t_{p0} \), associated with the instantaneous magnitude \(t_{p0} \), about the pitch axis that allows us to control the pitch angle. The reason for the generation of this effect is that the trajectory of the center of force, in red in Fig. 4, is shifted off the \(\hat{z} \) axis. Once again, since the mapping from \([\varphi(t) \varphi(t)]^T \) to \([\varphi(t) \varphi(t)]^T \) is approximately LTI, it follows that the sampled biases \(\varphi(t) \) and \(\varphi(t) \) are proportional to \(\beta(t) \) and \(\beta(t) \), as defined by (4) and (3), respectively.

B. Sensing

The feedback control strategy proposed in this paper is implemented using the robot’s position and orientation, measured using the Vicon motion capture system described in [3] and illustrated in Fig. 5. The orientation of the robot with respect to a fixed inertial frame is computed and then represented by the Euler angles \(\{\theta(t), \theta(t), \theta(t)\} \), which correspond to three consecutive rotations about the \(\hat{x} \) (pitch), \(\hat{y} \) (roll) and \(\hat{z} \) (yaw) axes fixed to the robot’s body. Thus, using the standard notation \(S_k = \sin \theta_k \) and \(C_k = \cos \theta_k \),

![Fig. 5. Schematic of the Vicon motion capture system used as a sensor.](image)

![Fig. 6. Upper level flight control diagram. The motion capture system is the sensor used to estimate the robot position \(\{\theta(t), \theta(t), \theta(t)\} \) and orientation \(\{\theta(t), \theta(t), \theta(t)\} \). The control variables are \(\{\theta(t), \theta(t), \theta(t)\} \). The measurement error \(\eta_B(t) \) is transformed to sensor noise \(\eta_B(t) \). The control signal is \(u(t) = \beta(t) \).](image)

![Fig. 7. Four flying states (cases), defined with respect to the pitch angle \(\theta(t) \) and the robot velocity along the roll axis \(\hat{v} \).](image)

![Fig. 8. 3-D trajectory of the robot during controlled flight corresponding to Experiment 1.](image)

![Fig. 9. Frames from high-speed video of Experiment 1 are overlaid and composited together to show the frontal view of the robot trajectory during controlled flight. The complete experiment is shown in the supporting movie available online through the website pointed by [18].](image)

for \(k = 1, 2, 3 \), it follows that

\[
\vec{p} = R \vec{v} = \vec{v}_{R} - \vec{v}_{B}
\]
where $\dot{\vec{p}}$ is the vector \vec{p} written with respect to the inertial frame $\{X, Y, Z\}$, $\dot{b}\vec{p}$ is the same vector \vec{p} written with respect to the frame $\{\dot{x}, \dot{y}, \dot{z}\}$, fixed to the robot’s body, and

$$R_{0_{\text{i-b}}} = \begin{bmatrix} C_2 C_3 & -S_2 C_2 & S_2 \\ S_3 C_1 + S_1 S_2 C_3 & C_1 C_3 - S_1 S_2 S_3 & -S_1 C_2 \\ S_1 S_3 - S_2 C_1 C_3 & S_1 C_3 + S_2 S_3 C_1 & C_1 C_2 \end{bmatrix}.$$ \hspace{1cm} (15)

From this point onwards, the $\{i,j\}$-entry of $R_{0_{\text{i-b}}}$ will be denoted by $R_{0_{\text{i-b}}}^{ij}$. Notice that from definition (15) it follows that $R_{0_{\text{i-b}}}^{-1} = R_{0_{\text{i-b}}}^{T}$.

The feedback controller described in Section III, depicted in Fig. 6, in the most general case, requires the computation of the instantaneous pitch, roll, and yaw angles. The algorithm for computing the pitch angle is as follows.

Algorithm 1.

(i) Find the plane that contains the pitch axis and is perpendicular to the fixed inertial horizontal plane.

(ii) Find the plane that contains the pitch axis and the yaw axis.

(iii) Find the dihedral angle between the planes in (ii) and (iii).

To translate Algorithm 1 into a formula, first note that the axes of the frame fixed to the robot’s body expressed in the inertial frame are simply

$$\hat{\vec{x}} = R_{0_{\text{i-b}}} b\hat{x}, \hspace{0.5cm} \hat{\vec{y}} = R_{0_{\text{i-b}}} b\hat{y}, \hspace{0.5cm} \hat{\vec{z}} = R_{0_{\text{i-b}}} b\hat{z},$$ \hspace{1cm} (16)

where $b\hat{x} = [1 \hspace{0.5cm} 0 \hspace{0.5cm} 0]^T$, $b\hat{y} = [0 \hspace{0.5cm} 1 \hspace{0.5cm} 0]^T$ and $b\hat{z} = [0 \hspace{0.5cm} 0 \hspace{0.5cm} 1]^T$. Recalling that the axes of the inertial frame written with respect to the inertial frame are $\hat{\vec{x}} = [1 \hspace{0.5cm} 0 \hspace{0.5cm} 0]^T$, $\hat{\vec{y}} = [0 \hspace{0.5cm} 1 \hspace{0.5cm} 0]^T$ and $\hat{\vec{z}} = [0 \hspace{0.5cm} 0 \hspace{0.5cm} 1]^T$, it follows that a vector perpendicular to the plane defined in (i), written with respect to the inertial frame, can be computed as $\hat{\vec{n}}_3 = \hat{\vec{x}} \times \hat{\vec{z}}$. Similarly, it follows that a vector perpendicular to the plane defined in (ii),

Fig. 10. 3-D trajectory of the robot during controlled flight corresponding to Experiment 2.

Fig. 11. Frames from high-speed video of Experiment 2 are overlaid and composited together to show the front view of the robot trajectory during controlled flight. The complete experiment is shown in the supporting movie available online through the website pointed by [18].

Fig. 12. Experiment 3 time-series of the robot’s degrees of freedom during unconstrained controlled flight. The variables $\theta_{\dot{p}x}(t)$, $\theta_{\dot{p}y}(t)$ and $\theta_{\dot{p}z}(t)$ are actively controlled, using direct references. The variables $\theta_{\dot{p}x}(t)$ and $\theta_{\dot{p}y}(t)$ are indirectly controlled by defining references for $\theta_{\dot{p}y}(t)$ and $\theta_{\dot{p}z}(t)$. The variable $\theta_{\dot{p}y}(t)$ is not controlled and it is allowed to drift freely.

Fig. 13. 3-D trajectory of the robot during controlled flight corresponding to Experiment 3.

Fig. 14. Frames from high-speed video of Experiment 3 are overlaid and composited together to show the front view of the robot trajectory during controlled flight. The complete experiment is shown in the supporting movie available online through the website pointed by [18].
written with respect to the inertial frame, is $\dot{\alpha}_2 = 0 \hat{x} \times 0 \hat{z}$. Then, it follows that the dihedral angle between the two planes defined in items (i) and (ii) of Algorithm 1, the pitch angle, can be computed as

$$\theta_{\text{Pitch}} = \left[\text{sign} \left(R_{0-32}^{(32)} \right) \right] \arccos \left(\frac{\hat{0}_{\alpha_2} \cdot \hat{0}_{\alpha_2}}{\| \hat{0}_{\alpha_2} \| \| \hat{0}_{\alpha_2} \|} \right),$$

where $-\pi \leq \theta_{\text{Pitch}} \leq \pi$.

A similar method to the one used to compute θ_{Pitch} can be employed to find the roll angle θ_{Roll}. Thus, after some algebraic work it follows that

$$\theta_{\text{Roll}} = -\left[\text{sign} \left(R_{0-31}^{(31)} \right) \right] \arccos \left(\frac{\hat{0}_{\alpha_2} \cdot \hat{0}_{\alpha_2}}{\| \hat{0}_{\alpha_2} \| \| \hat{0}_{\alpha_2} \|} \right),$$

where $-\pi \leq \theta_{\text{Roll}} \leq \pi$, with $\dot{\alpha}_1 = 0 \hat{y} \times 0 \hat{z}$ and $\dot{\alpha}_2 = 0 \hat{y} \times 0 \hat{z}$.

Finally, using the same logic, the yaw angle θ_{Yaw} can be computed as

$$\theta_{\text{Yaw}} = \left[\text{sign} \left(R_{0-21}^{(21)} \right) \right] \arccos \left(\frac{\hat{0}_{\alpha_2} \cdot \hat{0}_{\alpha_2}}{\| \hat{0}_{\alpha_2} \| \| \hat{0}_{\alpha_2} \|} \right),$$

where $-\pi \leq \theta_{\text{Yaw}} \leq \pi$, with $\hat{0}_{\alpha_1} = 0 \hat{Z} \times 0 \hat{x}$ and $\hat{0}_{\alpha_2} = 0 \hat{Y}$.

III. CONTROL STRATEGY

The main research issue addressed in this paper is the development of a model-free tunable strategy for simultaneously controlling the variables $\theta_{\text{Pitch}}(t)$, $\theta_{\text{Roll}}(t)$ and $\alpha_p(t)$, associated with the prototype described in Section II, during unconstrained flight. In principle, there are many options in order to create a control strategy for achieving stable and autonomous flight of the robot. As explained in Section II, here we directly modulate the controlled variables by varying signals $\nu_{\alpha_1}(t)$ and $\nu_{\alpha_2}(t)$ as defined by (4) and (5). With this purpose in mind, we define

$$\beta(t) = \beta_{\alpha_1}(t) = \alpha_{\beta_1}(t),$$

$$\alpha_R(t) = \alpha_{R_0}(t) + \alpha_{R_1}(t) + \alpha_{R_2}(t),$$

$$\alpha_L(t) = \alpha_{L_0}(t) + \alpha_{L_1}(t) + \alpha_{L_2}(t),$$

and then we choose

$$\alpha_0(t) = \alpha_{R_0}(t) = \alpha_{L_0}(t),$$

$$\alpha_1(t) = \alpha_{R_1}(t) = -\alpha_{L_1}(t),$$

$$\alpha_2(t) = \alpha_{R_2}(t) = \alpha_{L_2}(t).$$

Here, $\alpha_0(t)$ is chosen to be a constant that generates a baseline lift force. The variable $\beta(t)$ is used to modulate θ_{Pitch}, the variable $\alpha_1(t)$ is used to modulate θ_{Roll} and the variable $\alpha_2(t)$ is used to modulate the altitude $\alpha_p(t)$. Thus, as described in Fig. 6, the two relevant vectorial signals in the control problem considered here are chosen to be

$$u_\beta(t) = \begin{bmatrix} \beta(t) \\ \alpha_1(t) \\ \alpha_2(t) \end{bmatrix}, \quad y_B(t) = \begin{bmatrix} \theta_{\text{Pitch}}(t) \\ \theta_{\text{Roll}}(t) \\ \alpha_p(t) \end{bmatrix},$$

where the tilde symbols employed in the definition of $y_B(t)$ are used to emphasize the fact that $y_B(t)$ emerges from an estimation process (using the Vicon motion capture system described in the previous subsection), and consequently, each entry of $y_B(t)$ is the sum of the true value of a variable $\theta_{\text{Pitch}}(t), \theta_{\text{Roll}}(t)$ or $\alpha_p(t)$ and sensor noise. Recalling that due to physical constraints on the manner in which the actuators should be excited, the exciting signals must satisfy that $-1 \leq \nu_{\beta}(t) \leq 1$ and $-1 \leq \nu_{\alpha}(t) \leq 1$, and therefore, it follows that

$$0 \leq \alpha_0(t) + \beta(t) \leq 1,$$

$$0 \leq \alpha_1(t) + \beta(t) \leq 1,$$

$$0 \leq \alpha_2(t) + \beta(t) \leq 1,$$

which implies that $\beta(t), \alpha_1(t)$ and $\alpha_2(t)$ must meet strict saturation limits.

The approach proposed in this work for finding an experimentally feasible and stable controller is very intuitive and based on the idea illustrated in Fig. 7. Here, it is easy to see that if we assume a perfectly symmetric aerodynamic design and the absence of fabrication errors, a simple experimentally-tuned MIMO LTI controller with the form

$$u_B(t) = \begin{bmatrix} C(z) \nu_B(t) \end{bmatrix} = \begin{bmatrix} C(z) (r_{UB} - y_B) \end{bmatrix},$$

and an appropriate reference r_{UB} can be used to compensate for deviations from a desired vertical path. In the work presented in this paper, $C(z)$ is a diagonal transfer matrix with the diagonal labeled as $\{ C_{\theta_{\text{Pitch}}}(z), C_{\theta_{\text{Roll}}}(z), C_{\alpha_p}(z) \}$. In general, the control strategy in (29) is insufficient, from a stability perspective, in order to deal with asymmetries produced by small fabrication errors and with strong external disturbances, such as wind gusts, for example. In this paper, we propose a combined robustly stable strategy that includes the operator defined by (29) and another component that processes the information associated with the robot’s velocities along the $0 \hat{x}$ and $0 \hat{y}$ axes. This information is relevant because it relates to the restoring forces acting on the robot while flying horizontally. Furthermore, we experimentally demonstrate that the same proposed control method can be used for hovering and for implementing basic flying maneuvers. Note that, as shown in [4], the entry $C_{\alpha_p}(z)$ is enough to control altitude.

The main control idea here, that follows from Fig. 7, consists of adding four decoupled filters to the general control scheme. The first two filters take the velocity and position of the robot along the roll axis, $0 \hat{y}$, as inputs and deliver outputs that are added to the total actuation $\beta(t)$, which allows us to robustly stabilize the pitch-angle degree of freedom. The additional two filters take the velocity and position of the robot along the pitch axis, $0 \hat{x}$, as inputs and deliver outputs that are added to the total actuation $\alpha_1(t)$, which allows us to robustly stabilize the roll-angle degree of freedom. It is important to note that with the appropriate tuning of these filters, the position of the robot on the XY plane can be controlled. The robot’s position $(\alpha_{\beta}(t), \alpha_{\alpha_1}(t), \alpha_{\alpha_2}(t))$ is estimated using the previously described Vicon motion capture system. The velocity of the robot with respect to the inertial frame $(\dot{X}, \dot{Y}, \dot{Z})$ is simply calculated as

$$\dot{\alpha}_{\beta} = \begin{bmatrix} \dot{\alpha}_{\beta_0}(t) \\ \dot{\alpha}_{\beta_1}(t) \\ \dot{\alpha}_{\beta_2}(t) \end{bmatrix} = \begin{bmatrix} \dot{\alpha}_{\beta_0}(t) - \alpha_{\beta_0}(t-1) \\ \dot{\alpha}_{\beta_1}(t) - \alpha_{\beta_1}(t-1) \\ \dot{\alpha}_{\beta_2}(t) - \alpha_{\beta_2}(t-1) \end{bmatrix},$$

where α_{β} is the sampling rate already defined.

First, we describe the method for finding the filter that maps the velocity of the robot along the roll axis to the output that is added
to the total actuation $\beta(t)$. The robot's velocity and position along the roll axis are given by

\[
\begin{align*}
\dot{\alpha}_{\text{roll}}(t) &= \begin{bmatrix} 0 & \nabla \theta(t) \cdot \dot{\theta}(t) \end{bmatrix} \cdot \dot{\theta}(t), \\
\dot{\alpha}_{\text{Roll}}(t) &= \begin{bmatrix} 0 & \nabla \dot{\theta}(t) \cdot \dot{\theta}(t) \end{bmatrix} \cdot \dot{\theta}(t),
\end{align*}
\]

where, as defined before, $\dot{\theta}(t) = R_{0-b} \dot{\theta}(t)$.

The idea of using $\dot{\theta}(t)$ in the computation of the control signal $\beta(t)$ follows from the cartoon in Fig. 7. This cartoon shows the four relevant cases (flying states) that should be considered in order to robustly stabilize the pitch-angle of the robot during flight. The main notion behind the definition of different cases is that restoring forces play a relevant role when the stability of the flying robot is considered. To see this, assume without loss of generality that the pitch angles depicted in Case 1 and Case 4 in Fig. 7 are identical and that the magnitudes of the robot's velocities along the roll axis are also identical in both cases. The main difference between Case 1 and Case 4 is that in Case 1 the interaction of the robot with the air produces a restoring force that adds a corrective pitch moment and that in Case 4 the interaction of the robot with the air produces a force that adds a destabilizing pitch moment. This tells us that a successful and robust control strategy must add a term to the left side of (29) in order to account for the different amounts of actuation required in Case 4 with respect to Case 1.

Now, let us consider Cases 2 and 3. Analogous to Cases 4 and 1 (with negative pitch angles), in Cases 2 and 3 the pitch angle, θ_{Pitch}, is positive and without loss of generality, it is assumed that the magnitude of the pitch angle in Case 2 is identical to the pitch angle in Case 3. In Case 2, the robot's velocity along the roll axis is positive, which implies that wing drag adds a destabilizing pitch moment. In Case 3, the robot's velocity along the roll axis is negative, which implies that wing drag adds a corrective pitch moment. Thus, as argued in the previous paragraph, a new term must be added to the left side of (29) in order to account for the different amount of actuation required in Case 3 with respect to Case 2.

Thus, as a design choice, for the pitch angle degree of freedom, we propose a control structure with the form

\[
\beta(t) = C_{\text{Pitch}}(z) \left[r_{\theta_{\text{Pitch}}}(t) - \dot{\theta}_{\text{Pitch}}(t) \right] - \text{sign} \left[\nabla \dot{\theta}(t) \cdot \dot{\theta}(t) \right] V_{\text{Pitch}}(z) \left[\dot{\alpha}_{\text{roll}}(t) \right], \tag{33}
\]

which allows us to tune a robustly stable controller for the first entry of the MIMO strategy depicted in Fig. 6.

The analysis done for the pitch case can be replicated for the roll case. Thus, for the roll angle degree of freedom, we propose a control structure with the form

\[
\alpha_1(t) = C_{\text{Roll}}(z) \left[r_{\theta_{\text{Roll}}}(t) - \dot{\theta}_{\text{Roll}}(t) \right] - \text{sign} \left[\nabla \dot{x}(t) \cdot \dot{x}(t) \right] V_{\text{Roll}}(z) \left[\dot{\alpha}_{\text{Roll}}(t) \right], \tag{34}
\]

where

\[
\dot{\alpha}_{\text{Pitch}}(t) = \begin{bmatrix} 0 & \nabla \dot{\theta}(t) \cdot \dot{\theta}(t) \end{bmatrix} \cdot \dot{\theta}(t).
\]

As we demonstrate in Section IV, the control strategy in (33) and (34) allows us to stabilize the pitch angle and roll angle degrees of freedom, so that, the robot achieves unconstrained flight and autonomy from a control point of view. Thus, in theory, the robot could flight indefinitely. The main limitations of this approach is that there is not a direct way to set a reference for the position of the robot over the XY plane and that the robot displays a tendency to drift, because the method as proposed in (33) and (34) allows for the robot to move laterally in order to reject random disturbances that might affect the pitch angle or roll angle degrees of freedom. Another limitation, contingent to the experimental setup employed in this work, is that when the robot drifts, it can fly outside the control volume generated by the virtual motion capture system, described in Section II and illustrated in Fig. 5. Also, in this setup, the mobility of the robot is limited by the power wire (recall that the robot is not autonomous from a power point of view).

In order to deal with the limitations described in the previous paragraph, we modify the control strategy defined by (33) and (34) as follows

\[
\beta(t) = C_{\text{Pitch}}(z) \left[r_{\theta_{\text{Pitch}}}(t) - \dot{\theta}_{\text{Pitch}}(t) \right] - \text{sign} \left[\nabla \dot{\theta}(t) \cdot \dot{\theta}(t) \right] V_{\text{Pitch}}(z) \left[\dot{\alpha}_{\text{roll}}(t) \right] - \text{sign} \left[\nabla \dot{\theta}(t) \cdot \dot{\theta}(t) \right] P_{\text{Pitch}}(z) \left[\dot{\alpha}_{\text{Roll}}(t) \right] - \dot{\alpha}_{\text{Pitch}}(t), \tag{35}
\]

\[
\alpha_1(t) = C_{\text{Roll}}(z) \left[r_{\theta_{\text{Roll}}}(t) - \dot{\theta}_{\text{Roll}}(t) \right] - \text{sign} \left[\nabla \dot{x}(t) \cdot \dot{x}(t) \right] V_{\text{Roll}}(z) \left[\dot{\alpha}_{\text{Roll}}(t) \right] - \dot{\alpha}_{\text{Roll}}(t), \tag{36}
\]

and

\[
\alpha_1(t) = C_{\text{Roll}}(z) \left[r_{\theta_{\text{Roll}}}(t) - \dot{\theta}_{\text{Roll}}(t) \right] - \text{sign} \left[\nabla \dot{x}(t) \cdot \dot{x}(t) \right] V_{\text{Roll}}(z) \left[\dot{\alpha}_{\text{Roll}}(t) \right] - \dot{\alpha}_{\text{Roll}}(t), \tag{37}
\]

where,

\[
\dot{\alpha}_{\text{Pitch}}(t) = \begin{bmatrix} 0 & \nabla \dot{\theta}(t) \cdot \dot{\theta}(t) \end{bmatrix} \cdot \dot{\theta}(t).
\]

The logic behind this modified structure is that filters $V_{\text{Pitch}}(z)$ and $V_{\text{Roll}}(z)$, which are LTI, can be chosen to have a proportional-integral-derivative (PID) form, which implies that another interpretation of the laws in (33) and (34) is that the second term in (33) and the second term in (34) minimize the magnitudes of $\dot{\alpha}_{\text{Pitch}}(t)$ and $\dot{\alpha}_{\text{Roll}}(t)$, so that in steady state, velocities equal to 0 are achieved along the roll and pitch axes, respectively. Thus, the same filters $V_{\text{Pitch}}(z)$ and $V_{\text{Roll}}(z)$ can be used to minimize an error and follow a reference, as is done in the second terms of (36) and (37). Similarly, using the third terms of (36) and (37), the position of the robot on the XY can be controlled. In this case, the structures of filters $P_{\text{Pitch}}(z)$ and $P_{\text{Roll}}(z)$ are also PID.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present three representative experimental cases that demonstrate the most relevant aspects of the model-free control strategy proposed in this paper. In the course of the research discussed here, the first set of experiments conducted were attempts of open-loop unconstrained flight, which as expected, did not succeed because the MIMO open-loop plant of the system is unstable. A representative experiment of open-loop flight, labeled as Experiment 0, is shown in the accompanying video [18], where it can be seen that the robot lifts off but topples over almost immediately.

Experiment 1 shows a stable flight employing the method in (33) and (34), which uses $V_{\text{Pitch}}(z)$ and $V_{\text{Roll}}(z)$ to filter the robot's velocities along the roll and pitch axes, respectively in order to achieve robust stability. As previously explained, $V_{\text{Pitch}}(z)$ and $V_{\text{Roll}}(z)$ were developed based on the idea described in Fig. 7. The results for Experiment 1 are summarized by a plot of the 3-D trajectory in Fig. 8 and a composite image showing frames of a frontal view taken with a high speed camera shown in Fig. 9. The controller used in Experiment 1 was repeatedly tested and consistently was demonstrated capable of achieving robust stability in the sense that the robot was capable of flying oriented upright and not toppling over, even in the presence of strong disturbances. In Figs. 8 and 9, it can be seen that the robot drifts from its starting position on the horizontal plane, so that, once the robot leaves the tracking volume, the experiment ends. We think that this drifting behavior is partially due to the effect of the velocity filters, $V_{\text{Pitch}}(z)$ and $V_{\text{Roll}}(z)$, which during the transient time help to stabilize orientation, but potentially add lateral velocity resulting in drift.

In Experiment 2, the robot flies employing the control laws in (36) and (37), which address the drift issue observed in Experiment 1 by adding a correction for position on the horizontal plane, using the position filters $P_{\text{Pitch}}(z)$ and $P_{\text{Roll}}(z)$. The results for Experiment 2 are summarized by a plot of the 3-D trajectory in Fig. 10 and a composite image showing frames of a frontal view taken with a high speed camera shown in Fig. 11. These two figures demonstrate that the control laws in (36) and (37) make the system robustly stable in the sense that the robot flies oriented upright,
even in the presence of strong disturbances. Simultaneously, the control laws in (36) and (37) correct for and eliminate the drifting phenomenon observed in Experiment 1, such that, the robot flies straight up. The controller used in Experiment 2 was repeatedly tested and consistently proved capable of achieving stable straight vertical flight for the robot. In this kind of experiment, once the robot leaves from the top the tracking volume, the experiment ends. Finally, Experiment 3 shows hovering and trajectory following.

In this case, we use the same strategy in (36) and (37) for stabilizing the system and controlling position on the \(X \text{Y} \) plane. But, simultaneously we control altitude by choosing a finite reference for this degree of freedom (15 cm in this case). In Fig. 12, we show all the relevant degrees of freedom of the robot while flying. As explained in Section III, \(p_x(t), \theta_p(t), \theta_{yaw}(t) \) and \(\phi(t) \) are directly controlled, in this case with references 15 cm, 0 rad and 0 rad. The variables \(p_y(t) \) and \(\theta_y(t) \) are indirectly controlled using the second and third terms of the control laws in (36) and (37), in this case with references 0 cm and 0 cm. The variable \(\theta_{yaw}(t) \) is not controlled and it is allowed to drift freely. Fig. 13 shows the 3-D trajectory of the robot while flying, and a composite image, formed with the frames of a frontal view taken with a high speed camera, is shown in Fig. 14. The relevant control outputs are shown in Fig. 15. Lastly, a photographic sequence showing the robot’s position and orientation through time is shown in Fig. 16. Figs. 12, 13, 14, 15, and 16 present solid, compelling and comprehensive evidence that the robot remains stable and hovers around the reference position for six seconds. A movie with all the cases discussed in this section is available online [18].

V. Conclusion

We have described the development of a model-free controller for achieving stable autonomous flight and hovering of an insect-scale flapping-wing flying microrobot. By experimentally identifying and tuning key parameters affecting flight stability a relatively simple MIMO controller resulted, where each term of the controller had a known physically intuitive meaning. To accomplish stable straight vertical flight, controlling pitch and roll directly was not sufficient, a MIMO controller resulted, where each term of the controller had a known physically intuitive meaning. To accomplish stable straight vertical flight, controlling pitch and roll directly was not sufficient, and therefore, additional terms were necessary to account for the asymmetric nature of the wing drag force affect on pitch and roll moments. Stable hover was then achieved by adding direct altitude control and indirect position control. While the final experiments demonstrated a long and stable flight, a future model-based controller, based on system identification techniques, could offer better flight performance. The advantage of the model-free method used here is that it could potentially be easily applied to other, similar designs and prototypes and is an essential step towards the design of a future model-based control strategy.

REFERENCES

